Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.970
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38612808

RESUMO

We examined the localization of the 5-hydroxytryptamine (5-HT) receptor and its effects on mouse colonic interstitial cells of Cajal (ICCs) using electrophysiological techniques. Treatment with 5-HT increased the pacemaker activity in colonic ICCs with depolarization of membrane potentials in a dose-dependent manner. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channel blockers blocked pacemaker activity and 5-HT-induced effects. Moreover, an adenylate cyclase inhibitor inhibited 5-HT-induced effects, and cell-permeable 8-bromo-cAMP increased the pacemaker activity. Various agonists of the 5-HT receptor subtype were working in colonic ICCs, including the 5-HT4 receptor. In small intestinal ICCs, 5-HT depolarized the membrane potentials transiently. Adenylate cyclase inhibitors or HCN blockers did not show any influence on 5-HT-induced effects. Anoctamin-1 (ANO1) or T-type Ca2+ channel blockers inhibited the pacemaker activity of colonic ICCs and blocked 5-HT-induced effects. A tyrosine protein kinase inhibitor inhibited pacemaker activity in colonic ICCs under controlled conditions but did not show any influence on 5-HT-induced effects. Among mitogen-activated protein kinase (MAPK) inhibitors, a p38 MAPK inhibitor inhibited 5-HT-induced effects on colonic ICCs. Thus, 5-HT's effect on pacemaker activity in small intestinal and colonic ICCs has excitatory but variable patterns. ANO1, T-type Ca2+, and HCN channels are involved in 5-HT-induced effects, and MAPKs are involved in 5-HT effects in colonic ICCs.


Assuntos
Doenças do Colo , Células Intersticiais de Cajal , Animais , Camundongos , Masculino , Serotonina/farmacologia , Células Intersticiais do Testículo , Inibidores de Adenilil Ciclases , Bloqueadores dos Canais de Cálcio , Inibidores de Proteínas Quinases
2.
ACS Chem Neurosci ; 15(8): 1702-1711, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38433715

RESUMO

Serotonin-releasing fibers depart from the raphe nuclei to profusely innervate the entire central nervous system, displaying in some brain regions high structural plasticity in response to genetically induced abrogation of serotonin synthesis. Chronic fluoxetine treatment used as a tool to model peri-physiological, clinically relevant serotonin elevation is also able to cause structural rearrangements of the serotonergic fibers innervating the hippocampus. Whether this effect is limited to hippocampal-innervating fibers or extends to other populations of axons is not known. Here, we used confocal imaging and three-dimensional (3-D) modeling analysis to expand our morphological investigation of fluoxetine-mediated effects on serotonergic circuitry. We found that chronic treatment with a behaviorally active dose of fluoxetine affects the morphology and reduces the density of serotonergic axons innervating the medial prefrontal cortex, a brain region strongly implicated in the regulation of depressive- and anxiety-like behavior. Axons innervating the somatosensory cortex were unaffected, suggesting differential susceptibility to serotonin changes across cortical areas. Importantly, a 1-month washout period was sufficient to reverse morphological changes in both the medial prefrontal cortex and in the previously characterized hippocampus, as well as to normalize behavior, highlighting an intriguing relationship between axon density and an antidepressant-like effect. Overall, these results further demonstrate the bidirectional plasticity of defined serotonergic axons and provide additional insights into fluoxetine effects on the serotonergic system.


Assuntos
Fluoxetina , Serotonina , Fluoxetina/farmacologia , Serotonina/farmacologia , Antidepressivos/farmacologia , Hipocampo , Encéfalo
3.
Biol Pharm Bull ; 47(3): 660-668, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38508741

RESUMO

Flopropione (Flo) has been used for gallstone and urolithiasis as a spasmolytic agent almost exclusively in Japan. According to the package insert, its main mechanism is catechol-O-methyltransferase (COMT) inhibition and anti-serotonergic effect. This is obviously contrary to pharmacological common sense, but it is described that way in pharmacology textbooks and occurs in questions in the National Examination for Pharmacists in Japan. As this is a serious problem in education, we re-examined the action of Flo. The guinea pig ureter was hardly contracted by serotonin, but noradrenaline (NA) elicited repetitive twitch contraction, which was inhibited by Flo. The sphincter of Oddi (SO) exhibited a spontaneous repetitive twitch contraction, which was inhibited by NA and Flo. The inhibitory effect of NA was reversed by α- and ß-blockers, whereas that of Flo was not. Entacapone, a representative COMT inhibitor, did not affect the movement of the ureter and the SO. Nifedipine suppressed carbachol-induced contraction of the taenia coli, spontaneous movement of the SO, and NA-induced contraction of the ureter to almost the same extent, whereas Flo did not inhibit the taenia coli, but inhibited the contraction of the SO and the ureter. The inhibitory pattern of Flo resembled that of the ryanodine receptor agonist 4-chloro-m-cresol and the inositol 1,4,5-trisphosphate (IP3) receptor antagonist 2-aminoethoxydiphenyl borate. It is concluded that COMT inhibition or serotonin inhibition is not involved in the spasmolytic action of Flo. Flo might act on ryanodine receptors and/or IP3 receptors, which are responsible for periodic Ca release from Ca stores, to disrupt coordinated Ca dynamics.


Assuntos
Contração Muscular , Parassimpatolíticos , Propiofenonas , Animais , Cobaias , Parassimpatolíticos/farmacologia , Catecol O-Metiltransferase/farmacologia , Serotonina/farmacologia , Catecóis/farmacologia , Cálcio/farmacologia
4.
J Physiol ; 602(8): 1759-1774, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38502567

RESUMO

5-HT2 receptors on motoneurones play a critical role in facilitating persistent inward currents (PICs). Although facilitation of PICs can enhance self-sustained firing after periods of excitation, the relationship between 5-HT2 receptor activity and self-sustained firing in human motor units (MUs) has not been resolved. MU activity was assessed from the tibialis anterior of 10 healthy adults (24.9 ± 2.8 years) during two contraction protocols. Both protocols featured steady-state isometric contractions with constant descending drive to the motoneurone pool. However, one protocol also included an additional phase of superimposed descending drive. Adding and then removing descending drive in the middle of steady-state contractions altered MU firing behaviour across the motor pool, where newly recruited units in the superimposed phase were unable to switch off (P = 0.0002), and units recruited prior to additional descending drive reduced their discharge rates (P < 0.0001, difference in estimated marginal means (∆) = 2.24 pulses/s). The 5-HT2 receptor antagonist, cyproheptadine, was then administered to determine whether changes in MU firing were mediated by serotonergic mechanisms. 5-HT2 receptor antagonism caused reductions in MU discharge rate (P < 0.001, ∆ = 1.65 pulses/s), recruitment threshold (P = 0.00112, ∆ = 1.09% maximal voluntary contraction) and self-sustained firing duration (P < 0.0001, ∆ = 1.77s) after the additional descending drive was removed in the middle of the steady-state contraction. These findings indicate that serotonergic neuromodulation plays a key role in facilitating discharge and self-sustained firing of human motoneurones, where adaptive changes in MU recruitment must occur to meet the demands of the contraction. KEY POINTS: Animal and cellular preparations indicate that somato-dendritic 5-HT2 receptors regulate the intrinsic excitability of motoneurones. 5-HT2 receptor antagonism reduces estimates of persistent inward currents in motoneurones, which contribute to self-sustained firing when synaptic inputs are reduced or removed. This human study employed a contraction task that slowly increased (and then removed) the additional descending drive in the middle of a steady-state contraction where marked self-sustained firing occurred when the descending drive was removed. 5-HT2 receptor antagonism caused widespread reductions in motor unit (MU) discharge rates during contractions, which was accompanied by reduced recruitment threshold and attenuation of self-sustained firing duration after the removal of the additional descending drive to motoneurones. These findings support the role that serotonergic neuromodulation is a key facilitator of MU discharge and self-sustained firing of human motoneurones, where adaptative changes in MU recruitment must occur to meet the demands of the contraction.


Assuntos
Receptores 5-HT2 de Serotonina , Serotonina , Adulto , Humanos , Serotonina/farmacologia , Músculo Esquelético/fisiologia , Contração Isométrica/fisiologia , Neurônios Motores/fisiologia , Eletromiografia/métodos , Contração Muscular/fisiologia , Recrutamento Neurofisiológico/fisiologia
5.
Neurosci Lett ; 827: 137734, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38499279

RESUMO

Identifying additional noninvasive biomarkers for affective disorders, such as unipolar major depressive disorder (MDD) and bipolar disorder (BD), could aid in the diagnosis and treatment of these prevalent and debilitating neuropsychiatric conditions. One such candidate biomarker is the loudness dependence of the auditory evoked potential (LDAEP), an event-related potential that measures responsiveness of the auditory cortex to different intensities of sound. The LDAEP has been associated with MDD and BD, including therapeutic response to particular classes of antidepressant drugs, while also correlating with several other neuropsychiatric disorders. It has been suggested that increased values of the LDAEP indicate low central serotonergic neurotransmission, further implicating this EEG measure in depression. Here, we briefly review the literature on the LDAEP in affective disorders, including its association with serotonergic signaling, as well as with that of other neurotransmitters such as dopamine. We summarize key findings on the LDAEP and the genetics of these neurotransmitters, as well as prediction of response to particular classes of antidepressants in MDD, including SSRIs versus noradrenergic agents. The possible relationship between this EEG measure and suicidality is addressed. We also briefly analyze acute pharmacologic studies of serotonin and/or dopamine precursor depletion and the LDAEP. In conclusion, the existing literature suggests that serotonin and norepinephrine may modulate the LDAEP in an opposing manner, and that this event-related marker may be of use in predicting response to chronic treatment with particular pharmacologic agents in the context of affective disorders, such as MDD and BD, including in the presence of suicidality.


Assuntos
Transtorno Depressivo Maior , Serotonina , Humanos , Serotonina/farmacologia , Transtorno Depressivo Maior/tratamento farmacológico , Dopamina/farmacologia , Inibidores Seletivos de Recaptação de Serotonina , Potenciais Evocados Auditivos/fisiologia , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Eletroencefalografia
6.
Neurosci Lett ; 827: 137740, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38521402

RESUMO

New psychoactive substances (NPS) are typically synthesized in clandestine laboratories in an attempt to chemically modify already federally regulated drugs in an effort to circumvent the law. Drugs derived from a phenethylamine pharmacophore, such as 4-chloroamphetamine and 3,4-methylenedioxymethamphetamine (MDMA), reliably induce thermogenesis and serotonergic deficits in the striatum and hippocampus of rodents. 4-methylamphetamine (4-MA), a relative newcomer to the NPS scene, was originally investigated in the mid-1900 s as a potential anorexigenic agent. With its phenethylamine pharmacophore, 4-MA was hypothesized to produce similar toxicological alterations as its chemical analogs. In the present study, three doses (1.0, 2.5, and 5.0 mg/kg, ip.) of 4-MA were administered to rats twice daily for two days. Core temperature data were calculated and analyzed as temperature area under the curve (TAUC). On the second day of dosing, a hypothermic response to 4-MA (2.5 and 5.0 mg/kg) was noted between 0.5 and 2.0 h post-treatment. Only the highest dose of 4-MA decreased body weight on the second day of treatment and maintained this reduction in weight for seven days after treatment ceased. None of the doses of 4-MA evaluated significantly altered serotonin levels in the hippocampus or striatum seven days after final treatment. The present findings demonstrate that the 4-methyl substitution to amphetamine generates a pharmacological and toxicological profile that differs from other similar phenethylamine analogs.


Assuntos
Anfetaminas , Drogas Desenhadas , Metanfetamina , N-Metil-3,4-Metilenodioxianfetamina , Ratos , Animais , Metanfetamina/farmacologia , Serotonina/farmacologia , Drogas Desenhadas/farmacologia , Temperatura , N-Metil-3,4-Metilenodioxianfetamina/farmacologia , Anfetamina/farmacologia , Hipocampo , Serotoninérgicos/farmacologia , Serotoninérgicos/análise
7.
Neurogastroenterol Motil ; 36(4): e14754, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38316636

RESUMO

BACKGROUND: Lactulose is a laxative which accelerates transit and softens stool. Our aim was to investigate its mechanism of action and use this model of diarrhea to investigate the anti-diarrheal actions of ondansetron. METHODS: A double-blind, randomized, placebo-controlled crossover study of the effect of ondansetron 8 mg in 16 healthy volunteers. Serial MRI scans were performed fasted and 6 h after a meal. Participants then received lactulose 13.6 g twice daily and study drug for a further 36 h. On Day 3, they had further serial MRI scans for 4 h. Measurements included small bowel water content (SBWC), colonic volume, colonic gas, small bowel motility, whole gut transit, and ascending colon relaxation time (T1AC), a measure of colonic water content. KEY RESULTS: Lactulose increased area under the curve (AUC) of SBWC from 0 to 240 min, mean difference 14.2 L · min (95% CI 4.1, 24.3), p = 0.009, and substantially increased small bowel motility after 4 h (mean (95% CI) 523 (457-646) a.u. to 852 (771-1178) a.u., p = 0.007). There were no changes in T1AC after 36 h treatment. Ondansetron did not significantly alter SBWC, small bowel motility, transit, colonic volumes, colonic gas nor T1AC, with or without lactulose. CONCLUSION & INFERENCES: Lactulose increases SBWC and stimulates small bowel motility; however, unexpectedly it did not significantly alter colonic water content, suggesting its laxative effect is not osmotic but due to stimulation of motility. Ondansetron's lack of effect on intestinal water suggests its anti-diarrheal effect is not due to inhibition of secretion but more likely altered colonic motility.


Assuntos
Lactulose , Laxantes , Humanos , Lactulose/farmacologia , Laxantes/farmacologia , Ondansetron/farmacologia , Ondansetron/uso terapêutico , Serotonina/farmacologia , Água , Estudos Cross-Over , Colo/fisiologia , Trânsito Gastrointestinal/fisiologia
8.
Nat Commun ; 15(1): 1368, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365905

RESUMO

Serotonin (5-HT) imbalances in the developing prefrontal cortex (PFC) are linked to long-term behavioral deficits. However, the synaptic mechanisms underlying 5-HT-mediated PFC development are unknown. We found that chemogenetic suppression and enhancement of 5-HT release in the PFC during the first two postnatal weeks decreased and increased the density and strength of excitatory spine synapses, respectively, on prefrontal layer 2/3 pyramidal neurons in mice. 5-HT release on single spines induced structural and functional long-term potentiation (LTP), requiring both 5-HT2A and 5-HT7 receptor signals, in a glutamatergic activity-independent manner. Notably, LTP-inducing 5-HT stimuli increased the long-term survival of newly formed spines ( ≥ 6 h) via 5-HT7 Gαs activation. Chronic treatment of mice with fluoxetine, a selective serotonin-reuptake inhibitor, during the first two weeks, but not the third week of postnatal development, increased the density and strength of excitatory synapses. The effect of fluoxetine on PFC synaptic alterations in vivo was abolished by 5-HT2A and 5-HT7 receptor antagonists. Our data describe a molecular basis of 5-HT-dependent excitatory synaptic plasticity at the level of single spines in the PFC during early postnatal development.


Assuntos
Fluoxetina , Serotonina , Camundongos , Animais , Serotonina/farmacologia , Fluoxetina/farmacologia , Células Piramidais/fisiologia , Córtex Pré-Frontal/fisiologia , Sinapses/fisiologia
9.
ACS Chem Neurosci ; 15(6): 1185-1196, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38377469

RESUMO

A major subpopulation of midbrain 5-hydroxytryptamine (5-HT) neurons expresses the vesicular glutamate transporter 3 (VGLUT3) and co-releases 5-HT and glutamate, but the function of this co-release is unclear. Given the strong links between 5-HT and uncontrollable stress, we used a combination of c-Fos immunohistochemistry and conditional gene knockout mice to test the hypothesis that glutamate co-releasing 5-HT neurons are activated by stress and involved in stress coping. Acute, uncontrollable swim stress increased c-Fos immunoreactivity in neurons co-expressing VGLUT3 and the 5-HT marker tryptophan hydroxylase 2 (TPH2) in the dorsal raphe nucleus (DRN). This effect was localized in the ventral DRN subregion and prevented by the antidepressant fluoxetine. In contrast, a more controllable stressor, acute social defeat, had no effect on c-Fos immunoreactivity in VGLUT3-TPH2 co-expressing neurons in the DRN. To test whether activation of glutamate co-releasing 5-HT neurons was causally linked to stress coping, mice with a specific deletion of VGLUT3 in 5-HT neurons were exposed to acute swim stress. Compared to wildtype controls, the mutant mice showed increased climbing behavior, a measure of active coping. Wildtype mice also showed increased climbing when administered fluoxetine, revealing an interesting parallel between the behavioral effects of genetic loss of VGLUT3 in 5-HT neurons and 5-HT reuptake inhibition. We conclude that 5-HT-glutamate co-releasing neurons are recruited by exposure to uncontrollable stress. Furthermore, natural variation in the balance of 5-HT and glutamate co-released at the 5-HT synapse may impact stress susceptibility.


Assuntos
Ácido Glutâmico , Serotonina , Camundongos , Animais , Serotonina/farmacologia , Ácido Glutâmico/farmacologia , Fluoxetina/farmacologia , Núcleos da Rafe , Neurônios
10.
PeerJ ; 12: e16858, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38313029

RESUMO

A multitude of species engages in social interactions not only with their conspecifics but also with other species. Such interspecific interactions can be either positive, like helping, or negative, like aggressive behaviour. However, the physiological mechanisms of these behaviours remain unclear. Here, we manipulated the serotonin system, a well-known neurohormone for regulating intraspecific aggressive behaviour, to investigate its role in interspecific aggression. We tested whether serotonin blockade affects the aggressive behaviour of a coral reef fish species (Ctenochaetus striatus) that engages in mutualistic interactions with another species, the cleaner fish (Labroides dimidiatus). Although this mutualistic cleaning relationship may appear positive, cleaner fish do not always cooperate and remove ectoparasites from the other coral reef fish ("clients") but tend to cheat and bite the client's protective layer of mucus. Client fish thus often apply control mechanisms, like chasing, to deter their cleaner fish partners from cheating. Our findings show that blocking serotonin receptors 5-HT2A and 5-HT2C with ketanserin reduced the client fish's aggressive behaviour towards cleaner fish, but in the context where the latter did not cheat. These results are evidence of the involvement of serotonin in regulating aggressive behaviour at the between-species social interactions level. Yet, the direction of effect we found here is the opposite of previous findings using a similar experimental set-up and ecological context but with a different client fish species (Scolopsis bilineatus). Together, it suggests that serotonin's role in aggressive behaviour is complex, and at least in this mutualistic ecological context, its function is species-dependent. This warrants, to some extent, careful interpretations from single-species studies looking into the physiological mechanisms of social behaviour.


Assuntos
Perciformes , Serotonina , Humanos , Animais , Ketanserina/farmacologia , Serotonina/farmacologia , Agressão , Interação Social , Recifes de Corais , Peixes/parasitologia , Perciformes/fisiologia
11.
ACS Chem Neurosci ; 15(4): 798-807, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38336455

RESUMO

Rapid adenosine transiently regulates dopamine and glutamate via A1 receptors, but other neurotransmitters, such as serotonin, have not been studied. In this study, we examined the rapid modulatory effect of adenosine on serotonin release in the dorsal raphe nuclei (DRN) of mouse brain slices by using fast-scan cyclic voltammetry. To mimic adenosine release during damage, a rapid microinjection of adenosine at 50 pmol was applied before electrical stimulation of serotonin release. Transient adenosine significantly reduced electrically evoked serotonin release in the first 20 s after application, but serotonin release recovered to baseline as adenosine was cleared from the slice. The continuous perfusion of adenosine did not change the evoked serotonin release. Surprisingly, the modulatory effects of adenosine were not regulated by A1 receptors as adenosine still inhibited serotonin release in A1KO mice and also after perfusion of an A1 antagonist (8-cyclopentyl-1,3-dipropyl xanthine). The inhibition was also not regulated by A3 receptors as perfusion of the A3 antagonist (MRS 1220) in A1KO brain slices did not eliminate the inhibitory effects of transient adenosine. In addition, adenosine also inhibited serotonin release in A2AKO mice, showing that A2A did not modulate serotonin. However, perfusion of a selective 5HT1A autoreceptor antagonist drug [(S)-WAY 100135 dihydrochloride] abolished the inhibitory effect of transient adenosine on serotonin release. Thus, the transient neuromodulatory effect of adenosine on DRN serotonin release is regulated by serotonin autoreceptors and not by adenosine receptors. Rapid, transient adenosine modulation of neurotransmitters such as serotonin may have important implications for diseases such as depression and brain injury.


Assuntos
Núcleo Dorsal da Rafe , Serotonina , Camundongos , Animais , Serotonina/farmacologia , Adenosina , Antagonistas da Serotonina/farmacologia , Receptores de Serotonina/fisiologia
12.
Skin Res Technol ; 30(2): e13606, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38363081

RESUMO

BACKGROUND: Dopamine (D) and serotonin (5-HT) pathways contribute to psoriasis pathobiology. Disruptions incite increased inflammatory mediators, keratinocyte activation and deterioration, and worsening symptoms. Brilaroxazine (RP5063), which displays potent high binding affinity to D2/3/4 and 5-HT1A/2A/2B/7 receptors and a moderate affinity to serotonin transporter (SERT), may affect the underlying psoriasis pathology. METHODS: An imiquimod-induced psoriatic mouse model (BALB/c) evaluated brilaroxazine's activity in a topical liposomal-aqueous gel (Lipogel) formulation. Two of the three groups (n = 6 per) underwent induction with 5% imiquimod, and one group received topical brilaroxazine Lipogel (Days 1-11). Assessments included (1) Psoriasis Area and Severity Index (PASI) scores (Days 1-12), skin histology for Baker score based on H&E stained tissue (Day 12), and serum blood collection for serum cytokine analysis (Day 12). One-way ANOVA followed by post hoc Dunnett's t-test evaluated significance (p < 0.05). RESULTS: Imiquimod-induced animal Baker scores were higher versus Sham non-induced control's results (p < 0.001). Brilaroxazine Lipogel had significantly (p = 0.003) lower Baker scores versus the induced Psoriasis group. Brilaroxazine PASI scores were lower (p = 0.03) versus the induced Psoriasis group (Days 3-12), with the greatest effect in the last 3 days. The induced Psoriasis group showed higher Ki-67 and TGF-ß levels versus non-induced Sham controls (p = 0.001). The brilaroxazine Lipogel group displayed lower levels of these cytokines versus the induced Psoriasis group, Ki-67 (p = 0.001) and TGF-ß (p = 0.008), and no difference in TNF-α levels versus Sham non-induced controls. CONCLUSION: Brilaroxazine Lipogel displayed significant activity in imiquimod-induced psoriatic animals, offering a novel therapeutic strategy.


Assuntos
Fármacos Dermatológicos , Psoríase , Animais , Camundongos , Imiquimode/efeitos adversos , Antígeno Ki-67/metabolismo , Serotonina/metabolismo , Serotonina/farmacologia , Serotonina/uso terapêutico , Psoríase/induzido quimicamente , Psoríase/tratamento farmacológico , Pele/patologia , Fármacos Dermatológicos/farmacologia , Citocinas/metabolismo , Citocinas/farmacologia , Citocinas/uso terapêutico , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Fator de Crescimento Transformador beta/uso terapêutico , Modelos Animais de Doenças
13.
Pharmacol Res Perspect ; 12(1): e1175, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38339883

RESUMO

The aim of this study was to investigate the functional role of phosphodiesterase enzymes (PDE) in the isolated porcine ureter. Distal ureteral strips were mounted in organ baths and pre-contracted with 5-HT (100 µM). Upon generation of stable phasic contractions, PDE-4 and PDE-5 inhibitors were added cumulatively to separate tissues. PDE-4 inhibitors, such as rolipram (10 nM and greater) and roflumilast (100 nM and greater), resulted in significant attenuation of ureteral contractile responses, while a higher concentration of piclamilast (1 µM and greater) was required to induce a significant depressant effect. The attenuation effect by rolipram was abolished by SQ22536 (100 µM). PDE-5 inhibitors, such as sildenafil and tadalafil, were not nearly as effective and were only able to suppress the 5-HT-induced contractions at higher concentrations of 1 µM. Rolipram significantly enhanced the depressant effect of forskolin, while sodium nitroprusside-induced attenuation of contractile responses remained unchanged in the presence of tadalafil. In summary, our study demonstrates that PDE-4 inhibitors are effective in attenuating 5-HT-induced contractility in porcine distal ureteral tissues, while PDE-5 inhibitors are less effective. These findings suggest that PDE-4 inhibitors, such as rolipram, may hold promise as potential therapeutic agents for the treatment of ureteral disorders attributable to increased intra-ureteral pressure.


Assuntos
Inibidores da Fosfodiesterase 4 , Ureter , Animais , Suínos , Rolipram/farmacologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4 , Isoenzimas , Inibidores da Fosfodiesterase 5/farmacologia , Inibidores da Fosfodiesterase 4/farmacologia , Ureter/fisiologia , Serotonina/farmacologia , Tadalafila
14.
Neurosci Biobehav Rev ; 157: 105538, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38220035

RESUMO

Psychedelic agents, such as LSD and psilocybin, induce marked alterations in consciousness via activation of the 5-HT2A receptor (5-HT2ARs). We hypothesize that psychedelics enforce a state of synthetic surprise through the biased activation of the 5-HTRs system. This idea is informed by recent insights into the role of 5-HT in signaling surprise. The effects on consciousness, explained by the cognitive penetrability of perception, can be described within the predictive coding framework where surprise corresponds to prediction error, the mismatch between predictions and actual sensory input. Crucially, the precision afforded to the prediction error determines its effect on priors, enabling a dynamic interaction between top-down expectations and incoming sensory data. By integrating recent findings on predictive coding circuitry and 5-HT2ARs transcriptomic data, we propose a biological implementation with emphasis on the role of inhibitory interneurons. Implications arise for the clinical use of psychedelics, which may rely primarily on their inherent capacity to induce surprise in order to disrupt maladaptive patterns.


Assuntos
Alucinógenos , Humanos , Alucinógenos/farmacologia , Serotonina/farmacologia , Estado de Consciência , Transdução de Sinais
15.
Sci Rep ; 14(1): 1396, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38228622

RESUMO

Non-alcoholic steatohepatitis (NASH) is a major health problem leading to liver fibrosis and hepatocellular carcinoma, among other diseases, and for which there is still no approved drug treatment. Previous studies in animal models and in LX-2 cells have indicated a role for serotonin (5-HT) and 5-HT receptors in stellate cell activation and the development of NASH. In the current study, we investigated the extent to which these findings are applicable to a human NASH in vitro model consisting of human liver spheroids containing hepatocytes and non-parenchymal cells. Treatment of the spheroids with 5-HT or free fatty acids (FFA) induced fibrosis, whereas treatment of the spheroids with the 5-HT receptor antagonists ketanserin, pimavanserin, sarpogrelate, and SB269970 inhibited FFA-induced fibrosis via a reduction in stellate cell activation as determined by the expression of vimentin, TGF-ß1 and COL1A1 production. siRNA-based silencing of 5-HT2A receptor expression reduced the anti-fibrotic properties of ketanserin, suggesting a role for 5-HT receptors in general and 5-HT2A receptors in particular in the FFA-mediated increase in fibrosis in the human liver spheroid model. The results suggest a contribution of the 5-HT receptors in the development of FFA-induced human liver fibrosis with implications for further efforts in drug development.


Assuntos
Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Ketanserina/farmacologia , Serotonina/farmacologia , Serotonina/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Antagonistas da Serotonina/farmacologia , Fígado/metabolismo , Fibrose , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Receptores de Serotonina/metabolismo , Neoplasias Hepáticas/patologia
16.
Int J Biol Macromol ; 261(Pt 1): 129739, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38281529

RESUMO

A hybrid hydrogel system (GSOHA) consisting of serotonin-grafted gelatin and oxidized hyaluronic acid (OHA) was developed in this study to efficiently control bleeding and prevent bacterial infections during surgery and trauma. The study results showed that the incorporation of serotonin successfully produced hydrogels with rapid hemostatic, antibacterial, and antioxidant properties. The GSOHA hydrogel exhibited considerably stronger tissue adhesion (15.55 ± 0.36 kPa) to porcine skin than the commercial fibrin glue (1.09 ± 0.04 kPa). In addition, the hydrogel could rapidly absorb blood cells and stimulate cell conjugation with serotonin addition. In vitro experiments using endothelial cells and erythrocytes demonstrated the excellent biocompatibility and hemocompatibility of the hydrogel. Most importantly, the GSOHA hydrogel accelerated the wound healing process in a full-thickness skin defect mice model, and the histological staining results demonstrated that GSOHA significantly promoted collagen deposition and vascularization. In conclusion, this study demonstrated the significant potential of the GSOHA hydrogel as an adhesive dressing for rapid hemostasis and wound healing.


Assuntos
Gelatina , Ácido Hialurônico , Animais , Camundongos , Suínos , Gelatina/farmacologia , Ácido Hialurônico/farmacologia , Hidrogéis/farmacologia , Serotonina/farmacologia , Células Endoteliais , Cicatrização , Antibacterianos , Hemostasia
17.
Mol Cell ; 84(4): 760-775.e7, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38215751

RESUMO

Apart from the canonical serotonin (5-hydroxytryptamine [5-HT])-receptor signaling transduction pattern, 5-HT-involved post-translational serotonylation has recently been noted. Here, we report a glyceraldehyde-3-phosphate dehydrogenase (GAPDH) serotonylation system that promotes the glycolytic metabolism and antitumor immune activity of CD8+ T cells. Tissue transglutaminase 2 (TGM2) transfers 5-HT to GAPDH glutamine 262 and catalyzes the serotonylation reaction. Serotonylation supports the cytoplasmic localization of GAPDH, which induces a glycolytic metabolic shift in CD8+ T cells and contributes to antitumor immunity. CD8+ T cells accumulate intracellular 5-HT for serotonylation through both synthesis by tryptophan hydroxylase 1 (TPH1) and uptake from the extracellular compartment via serotonin transporter (SERT). Monoamine oxidase A (MAOA) degrades 5-HT and acts as an intrinsic negative regulator of CD8+ T cells. The adoptive transfer of 5-HT-producing TPH1-overexpressing chimeric antigen receptor T (CAR-T) cells induced a robust antitumor response. Our findings expand the known range of neuroimmune interaction patterns by providing evidence of receptor-independent serotonylation post-translational modification.


Assuntos
Linfócitos T CD8-Positivos , Serotonina , Linfócitos T CD8-Positivos/metabolismo , Serotonina/metabolismo , Serotonina/farmacologia , Processamento de Proteína Pós-Traducional , Transdução de Sinais
18.
Hypertension ; 81(3): 582-594, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38174565

RESUMO

BACKGROUND: Clinical evidence revealed abnormal prevalence of coronary artery (CA) disease in patients with pulmonary hypertension (PH). The mechanistic connection between PH and CA disease is unclear. Serotonin (5-hydroxytryptamine), reactive oxygen species, and Ca2+ signaling have been implicated in both PH and CA disease. Our recent study indicates that NOXs (NADPH [nicotinamide adenine dinucleotide phosphate] oxidases) and TRPM2 (transient receptor potential cation channel subfamily M member 2) are key components of their interplay. We hypothesize that activation of the NOX-TRPM2 pathway facilitates the remodeling of CA in PH. METHODS: Left and right CAs from chronic hypoxia and monocrotaline-induced PH rats were collected to study vascular reactivity, gene expression, metabolism, and mitochondrial function. Inhibitors or specific siRNA were used to examine the pathological functions of NOX1/4-TRPM2 in CA smooth muscle cells. RESULTS: Significant CA remodeling and 5-hydroxytryptamine hyperreactivity in the right CA were observed in PH rats. NOX1/4-mediated reactive oxygen species production coupled with TRPM2-mediated Ca2+ influx contributed to 5-hydroxytryptamine hyperresponsiveness. CA smooth muscle cells from chronic hypoxia-PH rats exhibited increased proliferation, migration, apoptosis, and metabolic reprogramming in an NOX1/4-TRPM2-dependent manner. Furthermore, the NOX1/4-TRPM2 pathway participated in mitochondrial dysfunction, involving mitochondrial DNA damage, reactive oxygen species production, elevated mitochondrial membrane potential, mitochondrial Ca2+ accumulation, and mitochondrial fission. In vivo knockdown of NOX1/4 alleviated PH and suppressed CA remodeling in chronic hypoxia rats. CONCLUSIONS: PH triggers an increase in 5-hydroxytryptamine reactivity in the right CA and provokes metabolic reprogramming and mitochondrial disruption in CA smooth muscle cells via NOX1/4-TRPM2 activation. This signaling pathway may play an important role in CA remodeling and CA disease in PH.


Assuntos
Hipertensão Pulmonar , Canais de Cátion TRPM , Humanos , Ratos , Animais , Hipertensão Pulmonar/metabolismo , Serotonina/farmacologia , Serotonina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Vasos Coronários/patologia , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , 60645 , Transdução de Sinais , NADPH Oxidases/metabolismo , Hipóxia/complicações , Hipóxia/metabolismo , Miócitos de Músculo Liso/metabolismo , NADPH Oxidase 1/metabolismo
19.
Int J Biol Macromol ; 260(Pt 2): 129539, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38244737

RESUMO

5-Hydroxytryptamine (5-HT) and its derivative bufotenine, which possess important physiological functions, are the primary active components in the secretions of toad parotid and skin gland. However, the biosynthetic pathway of these substances remains unclear in toads. To characterize toad's Aromatic-L-amino-acid decarboxylase (AADC), the key enzyme in the predicted 5-HT derivatives biosynthetic pathway, the full-length cDNA of AADC from Bufo bufo gargarizans (BbgAADC) was cloned from the parotoid gland of B. bufo gargarizans. The recombinant BbgAADC exhibited optimal expression in E. coli BL21 (DE3) containing pCold-BbgAADC after induction for 16 h at 15 °C with 0.3 mM IPTG, resulting in substantial yields of soluble proteins. The enzymological properties of BbgAADC were assessed, and it was determined that the optimal reaction temperature was 37 °C, the optimal pH was 8.6, and the optimum molar ratio of pyridoxal-5'-phosphate (PLP) to BbgAADC was found to be 3.6:1. Additionally, high substrate specificity was observed, as BbgAADC could catalyze the production of 5-HT from 5-hydroxytryptophan (5-HTP) but not dopamine or tryptamine from levodopa or tryptophan, respectively. The Km of the recombinant protein BbgAADC was 0.2918 mM and the maximum reaction rate (Vmax) was 1.182 µM·min-1 when 5-HTP was used as substrate. The Kcat was 0.0545 min-1, and Kcat/Km was 0.1868 mM-1·min-1. To elucidate the mechanism of BbgAADC, molecular docking was performed with PLP and 5-HTP, or the external aldimine formed by 5-HTP and PLP. The results indicated that the active sites for BbgAADC to bind with PLP were K303, H192, N300, A148, F309, T246, A273, and T147. W71, Y79, F80, P81, T82, H192, T246, N300, H302, F309, and R477 served as catalytically active sites for the binding of BbgAADC to 5-HTP. Furthermore, R447, W71, S149, N300, A148, and T147 of BbgAADC were involved in the decarboxylation reaction of the aldimine formed by PLP and 5-HTP.


Assuntos
5-Hidroxitriptofano , Bufo bufo , Animais , Bufo bufo/metabolismo , 5-Hidroxitriptofano/genética , 5-Hidroxitriptofano/metabolismo , Serotonina/farmacologia , Escherichia coli/genética , Escherichia coli/metabolismo , Simulação de Acoplamento Molecular , Descarboxilases de Aminoácido-L-Aromático/genética , Descarboxilases de Aminoácido-L-Aromático/metabolismo , Bufonidae/metabolismo , Clonagem Molecular
20.
Nat Struct Mol Biol ; 31(4): 598-609, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38177669

RESUMO

Hyperactivity of serotonin 3 receptors (5-HT3R) underlies pathologies associated with irritable bowel syndrome and chemotherapy-induced nausea and vomiting. Setrons, a class of high-affinity competitive antagonists, are used in the treatment of these conditions. Although generally effective for chemotherapy-induced nausea and vomiting, the use of setrons for treating irritable bowel syndrome has been impaired by adverse side effects. Partial agonists are now being considered as an alternative strategy, with potentially less severe side effects than full antagonists. However, a structural understanding of how these ligands work is lacking. Here, we present high-resolution cryogenic electron microscopy structures of the mouse 5-HT3AR in complex with partial agonists (SMP-100 and ALB-148471) captured in pre-activated and open-like conformational states. Molecular dynamics simulations were used to assess the stability of drug-binding poses and interactions with the receptor over time. Together, these studies reveal mechanisms for the functional differences between orthosteric partial agonists, full agonists and antagonists of the 5-HT3AR.


Assuntos
Antineoplásicos , Síndrome do Intestino Irritável , Camundongos , Animais , Serotonina/farmacologia , Vômito , Náusea
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...